Mapping Land Cover Based on Time Series Synthetic Aperture Radar (SAR) Data in Klaten, Indonesia

Vidya Nahdhiyatul Fikriyah


Information on the existing land cover is important for land management and planning because it can represent the intensity, location, and pattern of human activities. However, mapping land cover in tropical regions is not easy when using optical remote sensing due to the scarcity of cloud-free images. Therefore, the objective of this study is to map the land cover in Klaten Regency using a time-series Sentinel-1 data. Sentinel-1 data is one of remote sensing images with Synthetic Aperture Radar (SAR) system which is well known by its capability of cloud penetration and all-weather observation. A time-series Sentinel-1 data of both polarisations, VV and VH were automatically classified using an unsupervised classification technique, ISODATA. The results show that the land cover classifications obtained overall accuracies of 79.26% and 73.79% for VV and VH respectively. It is also found that Klaten is still dominated by the vegetated land (agriculture and non-agricultural land). These results suggest the opportunity of mapping land cover using SAR multi temporal data.

Keywords: Land cover; Synthetic Aperture Radar; Time series; Sentinel-1; Klaten


Full Text:

12-21 (PDF)


Abdikan, S., Sanli, F.B., Ustuner, M., Calò, F. (2016) Land cover mapping using sentinel-1 SAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 41, 757–761. doi:10.5194/isprsarchives-XLI-B7-757-2016

Argenti, F., Lapini, A., Bianchi, T., Alparone, L. (2013) A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag.,1, 6–35. doi:10.1109/MGRS.2013.2277512

Balzter, H., Cole, B., Thiel, C., Schmullius, C. (2015) Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sens., 7, 14876–14898. doi:10.3390/rs71114876

Ban, Y., Wu, Q. (2005) RADARSAT SAR data for landuse/land-cover classification in the rural-urban fringe of the Greater Toronto Area, in: Proceedings 2005 - The 8th AGILE International Conference on Geographic Information Science, AGILE 2005.

Bouvet, A., Le Toan, T. (2011) Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ., 115, 1090–1101. doi:10.1016/j.rse.2010.12.014

BPS (2017) Statistik Padi Tahun 2017. BPS (Central Bureau of Statistics) Klaten, Klaten.

Engdahl, M.E., Hyyppä, J.M. (2003) Land-cover classification using multitemporal ERS-1/2 InSAR data. IEEE Trans. Geosci. Remote Sens., 41, 1620–1628. doi:10.1109/TGRS.2003.813271

European Space Agency (ESA) (2013) ESA Sentinel 1 handbook, European Space Agency technical note. doi:10.1017/CBO9781107415324.004

Kasischke, E.S., Melack, J.M., Dobson, M.C. (1996) The Use of Imaging Radars for Ecological Applications - A Review. Remote SENS. ENVIRON. Sci. Inc, 59, 141–156.

Khoi, D.D., Munthali, K.G. (2012) Multispectral Classification of Remote Sensing Data for Geospatial Analysis, in: Progress in Geospatial Analysis. Springer Japan, Tokyo, pp. 13–28. doi:10.1007/978-4-431-54000-7_2

Koppe, W., Gnyp, M.L., Hütt, C., Yao, Y., Miao, Y., Chen, X., Bareth, G. (2013) Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. Geoinf., 21, 568–576. doi:10.1016/j.jag.2012.07.016

Lam-Dao, N., Le Toan, T., Apan, A., Bouvet, A., Young, F., Le-Van, T. (2009) Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta. J. Appl. Remote Sens., 3, 033563. doi:10.1117/1.3271046

Lee, J.-S., Pottier, E., Thompson, B.J. (2009) Polarimetric radar imaging : from basics to applications, 1st ed. CRC Press, Baton Rouge.

Longépé, N., Rakwatin, P., Isoguchi, O., Shimada, M., Uryu, Y., Yulianto, K. (2011) Assessment of ALOS PALSAR 50 m orthorectified FBD data for regional land cover classification by support vector machines. IEEE Trans. Geosci. Remote Sens., 49, 2135–2150. doi:10.1109/TGRS.2010.2102041

Mohajane, M., Essahlaoui, A., Oudija, F., Hafyani, M. El, Hmaidi, A. El, Ouali, A. El, Randazzo, G., Teodoro, A.C. (2018) Land Use / Land Cover ( LULC ) Using Landsat Data Series ( MSS , TM , ETM + and OLI ) in Azrou Forest , in the Central Middle Atlas of Morocco. Environments, 5, 1–16. doi:10.3390/environments5120131

Priyono, P., Susilo, I., Karyono, K., Sigit, A.A. (2016) Analisis Profil Daerah Kabupaten Klaten Tahun 2002-2005. Forum Geogr., 20, 27–46. doi:

Richards, J. a, Jia, X. (2006) Remote Sensing Digital Image Analysis, Methods. doi:10.1007/3-540-29711-1

Sari, N.M., Kushardono, D. (2014) Klasifikasi Penutup Lahan Berbasis Obyek Pada Data Foto Uav Untuk Mendukung Penyediaan Informasi Penginderaan Jauh Skala Rinci (Object Based Classification Of Land Cover On Uav Photo Data To Support The Provision Of Detailed-Scale Remote Sensing Informati. Penginderaan Jauh, 11, 114–127.

Trisakti, B., Hamzah, R. (2013) Utilization of multi temporal sar data for forest mapping model development 10, 65–74. doi:

Tso, B., Mather, P.M. (2009) Classification methods for remotely sensed data, Methods. doi:10.4324/9780203303566

Veci, L. (2015) SENTINEL-1 Toolbox SAR Basics Tutorial. Esa.

Zhang, M., Guo, H., Xie, X., Zhang, T., Ouyang, Z., Zhao, B. (2013) Identification of Land-Cover Characteristics Using MODIS Time Series Data : An Application in the Yangtze River Estuary 8. Plos One doi:10.1371/journal.pone.0070079.



  • There are currently no refbacks.

View My Stats