Assessment of the groundwater recharge potential areas using GIS in Kajor Kulon Hamlet, Selopamioro, Imogiri, Bantul, Yogyakarta

Deni Rahman Saputra, Andi Renata Ade Yudono, Partoyo Partoyo

Abstract


Groundwater balance occurs in the presence of recharge and discharge. The process of entering the water in soil takes place with an infiltration-percolation to aquifers. The groundwater recharge area is identified by lithology, land use, slope, rainfall, land, and landform. Kajor Kulon Hamlet, Selopamioro Village, Imogiri Sub-district, Bantul Regency, Special Region of Yogyakarta becomes an area with hilly morphology, active fault areas, and including drought-prone regions. Change of the land function in hilly areas by making settlements and un-irrigation field for farming may cause decreased ability as a recharge area. Research aim sare to assessing, determining, and analyzing the conditions of the establishment in the research area. The variables used include land use, the slope of the land, rainfall, and soil texture as thematic maps to analysis its land ability. Data collection methods are measurement, inquiry, and mapping. Furthermore, the method of analysis is based on the Geographic Information Systems (GIS) with scoring-weighted overlay method. The results showed the classification of the between low, medium, and high. The medium class is currently occupying 67% of the area in the research area with an area of 719,916.03 m2. The distribution of each class is expressed through the groundwater recharge area map. The GIS is very efficient and effective in facilitating groundwater recharge area analysis.

Keywords: GIS, Groundwater, Overlay, Potential, Recharge Area, Selopamioro

DOI: http://dx.doi.org/10.7454/jglitrop.v4i2.89


Full Text:

116-128 (PDF)

References


Balakrishnan, M. (2019). Geospatial Data Validation Procedure and Techniques. Int. Arch. App. Sci. Technol, 10 (March), 148–153. https://doi.org/10.15515/iaast.0976-4828.10.1.148153.

Balasubramanian, A. (2017). Soil Forming Processes Soil Forming Factors. Centre for Advanced Studies in Earth Science, University of Mysore, Mysore Objectives, 1–8. https://doi.org/10.13140/RG.2.2.34636.00644.

Belay F., Islam Z., & Tiahun A. (2015). Application of The Overlay Weighted Model to Determine the Best Locations for Expansion of Adigrat Town. Indo-African Journal for Resource Management and Planning, 3 (1).

Central Bantul of Statistic. (2018, May 20). Kabupaten Bantul Dalam Angka. December, 26, 2018

Danaryanto, Tirtomiharjo, H., Setiadi, H., & Siagian, Y. (2007). Kumpulan Pedoman Teknis Pengelolaan Sumber Daya Airtanah. Ministry for Energy and Mineral Resources, Bandung.

Dirmeyer, P. A. & Brubaker, K. L. (2007). Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. Journal of Hydrometeorology, 8(1), 20–37. https://doi.org/10.1175/JHM557.1.

Fajri, S. N., Surtiyono, E. & Nalendra, S. (2019). Lineament analysis of digital elevation model to identification of geological structure in Northern Manna Sub-Basin, Bengkulu. IOP Conference Series: Materials Science and Engineering, 636 (1). https://doi.org/ 10.1088/1757-899X/636/1/012001.

Freeze, R.A., & Cherry, J.A. (1979). Groundwaters. Pentice-Hall, Inc, Englewood Cliff, New Jersey.

Hendrayana, H. (2011). Cekungan Airtanah Yogyakarta Sleman: Potensi, Pemanfaatan, dan Pengelolaan Airtanah. Natioanl Workshop Asia Pasific Centerfor Ecohydro, Universitas Gajah Mada Yogyakarta.

Hillel, D. (2008). Soil Formation. Soil in the Environment, 15–26. https://doi.org/10.1016/b978-0-12-348536-6.50008-3.

Hristov, B. (2013). Importance of soil texture in Soil Classification systems. Balkan Ecology, 16 (2), 137–139.

Indonesian National Board for Disaster Management. (2014, May 25). Drought map of Bantul Regency. August, 8, 2014.

Kodoatie, R. J. (2012). Tata Ruang Air Tanah. Penerbit Andi. Yogyakarta.

Kuruppath, A. R. N., & Kannan, B. (2017). Identification of Potential Groundwater Recharge Zones Using Remote Sensing and Geographical Information System in Amaravathy Basin. Journal of Remote Sensing & GIS, 06(04). https://doi.org/10.4172/2469-4134.1000213.

Martín, M. Á., Yakov, A.P., Carlos, G.G., & Miguel, R. (2018). On soil textural classifications and soil-texture-based estimations. Solid Earth, 9 (1), 159–165. https://doi.org/10.5194/se-9-159-2018.

Ministry of Public Works and Public Housing. (2015). Pedoman Penyusunan Pengelolaan Sumber Daya Air, Jakarta. December, 15, 2015.

Nasrullah & Irianto, S. (2017). Geologi Daerah Selopamioro dan Sekitarnya Kecamatan Imogiri Kabupaten Bantul Daerah Istimewa Yogyakarta, 1–10.

Notohadiprawiro, T. (1983). Selidik Cepat Ciri Tanah Di Lapangan. Ghalia Indonesia. Yogyakarta.

Olumuyiwa I. O., Fred, A. O. & George, M. O. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4 (6). https://doi.org/10.5897/ijwree12.038.

Rohmat, D., Herryan K., & Suardi, N. (2016). Deliniasi Daerah Resapan dan Tangkapan Air di Hulu DAS untuk Menjamin Kesinambungan Suplai Air Menuju Derah Irigasi Mandiri Energi, Universitas Pendidikan Indonesia.

Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeology Journal, 14(4), 433–443. https://doi.org/10.1007/s10040-005-0437-6.

Singh, S. K., Malte, Z., Ude, S., & George, A.G. (2019). Potential groundwater recharge zones within New Zealand. Geoscience Frontiers, 10(3), 1065–1072.

https://doi.org/10.1016/j.gsf.2018.05.018.

Soepraptohardjo, M. (1961). Jenis-jenis Tanah di Indonesia. Lembaga Penelitian. Tanah. Bogor.

Store, R. A, & Jokimäki, J. (2003). A GIS-based multi-scale approach to habitat suitability modeling. Ecological Modelling, 169 (1), 1–15. https://doi.org/10.1016/S0304-3800(03)00203-5.

Todd, D. K. & Larry. (1980). Ground-Water-Hydrology. John Wiley & Sons,Inc.

Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795–4812. https://doi.org/10.1029/jz068i016p04795.

Tweed, S. O., Marc, L., John, A.W., & Maceik, W. L. (2007). Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeology Journal, 15 (1), 75–96. https://doi.org/10.1007/s10040-006-0129-x.

Van Zuidam. (1983). Guide to Geomorphologic aerial photographic interpretation and mapping. ITC. Enschede The Netherlands.

Waikar, M. L., & Nilawar, A. P. (2014). Identification of potential groundwater zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3 (5), 12163-12174.

Wangsaatmaja, S., Sutadian, A. D. & Prasetiati, M. A. N. (2006). A Review of Groundwater Issues in the Bandung Basin, Indonesia: Management and Recommendations. International Review for Environmental Strategies, 6 (2), 425–441.

Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Groundwater and surface water: A single resource. Water Environment and Technology, 17(5), 37–41.

Yeh, H. F., Youg-Shin, C., Hung-I, L., & Cheng-Haw, L. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research. Elsevier Ltd, 26 (1), 33–43. https://doi.org/ 10.1016/j.serj.2015.09.005.

Zuoza, V. H. D. & Pleguezuelo, C. R. R. (2008). Soil-Erosion and Runoff Prevention by Plant Covers. Agronomie, 407–418. https://doi.org/doi: 10.1051/agro.




DOI: http://dx.doi.org/10.7454/jglitrop.v4i2.89

Refbacks

  • There are currently no refbacks.


View My Stats